Newton’s shell theorem
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This theorem shows that a spherically symmetric body, mass My,qy, €xerts a gravitational force on an
external object, mass m, that equals the force between m and a point mass My,qy , located at the centre of

the spherical distribution. Many astronomical objects (especially stars and planets) are nearly spherically
symmetric. Consequently, we can calculate the gravitational forces between them using their masses and
the distance between their centres. Let’s see why.

Consider first a thin spherically
symmetric shell (dark shading) of
mass M and radius R and a point
mass m at r from its centre, as
shown. First we consider the case r
> R. We need to integrate the
gravitational attraction between m
and all parts of M.

For the integration, we slice the
shell up into narrow rings (light
shading), so that all points in the
ring are the same distance, s, from
m. Let the ring subtend an angle dO,
as shown.
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We define o, the area density or mass per unit area of the shell: o = IR2 So the mass of the ring is dM

1s o times its area. Its circumference is 2nRsinO and its width is Rd0, so
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The force exerted by each part of the ring is a vector, and we must add these vectors. From symmetry,
however, the gravitational force on m will be along the axis of the ring, so we need only add the vectors on
the axis. Each tiny part along the perimeter of the ring exerts a force towards it, and the axial component of
each force includes a factor cos¢.
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From the cosine rule, we can write
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All three of 0, ¢ and s vary. Let's make s the independent variable. Differentiating both sides of the
equation for cos 0 gives
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We can then subsitute this equation, plus the expression for cos ¢ in our expression for dF
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To include the whole shell, s varies from (r-R) to (r+R), so the force due to the whole shell is
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The integrand as the form (constant? + s2)/s2, so the integral is a standard one. The definite integral has the

value 4R, so we obtain the simple expression
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For a spherically symmetric distribution of mass, we can then integrate over R. Each shell gives a similar
expression.

Now look at the case where r <R,
1.e. when m is inside the hollow
shell. In this case, integrating over
the sphere requires that s go from
R-r to R+r: this changes the sign of
the lower limit of integration. In

this case, the integral gives zero. So,
inside a hollow shell, the total
gravitational field due to the shell is
Zero.

This may seem odd: in this
diagram, most of the shell is to the
left of m. However, some of the
parts to the right of m are closer to
m, and these effects cancel out.

Combining the two results, we see that, at a point inside a symmetric distribution of mass, only the mass closer
to the centre contributes to the gravitational field.



