![]() |
|
|
|
dB: What is a decibel? Decibels: dB, dB(A), dBA, dB(C), dBV, dBm and dBi? What are they all? How are they related to loudness, to phons and to sones? And how loud is loud? This page describes and compares them all and gives sound file examples. A related page allows you to measure your hearing response and to compare with standard hearing curves. This is a background page to the multimedia chapters Sound and Quantifying Sound. (See also our Acoustics FAQ.)
Definition and examplesThe decibel (dB) is a logarithmic unit used to measure sound level. It is also widely used in electronics, signals and communication. The dB is a logarithmic way of describing a ratio. The ratio may be power, sound pressure, voltage or intensity or several other things. Later on we relate dB to the phon and to the sone, which measures loudness. But first, to get a taste for logarithmic expressions, let's look at some numbers. (If you have forgotten, go to What is a logarithm?)For instance, suppose we have two loudspeakers, the first playing a sound with power P1, and another playing a louder version of the same sound with power P2, but everything else (how far away, frequency) kept the same. Using the decibel unit, the difference in sound level, between the two is defined to be 10 log (P2/P1) dB where the log is to base 10. If the second produces twice as much power than the first, the difference in dB is10 log (P2/P1) = 10 log 2 = 3 dB (to a good approximation). This is shown on the graph, which plots 10 log (P2/P1) against P2/P1. To continue the example, if the second had 10 times the power of the first, the difference in dB would be10 log (P2/P1) = 10 log 10 = 10 dB. If the second had a million times the power of the first, the difference in dB would be10 log (P2/P1) = 10 log 1,000,000 = 60 dB. This example shows a feature of decibel scales that is useful in discussing sound: they can describe very big ratios using numbers of modest size. But note that the decibel describes a ratio: so far we have not said what power either of the speakers radiates, only the ratio of powers. (Note also the factor 10 in the definition, which puts the 'deci' in decibel: level difference in bels (named for Alexander Graham Bell) is just log (P2/P1).) Sound pressure,
sound level and dB. Sound is usually measured with microphones and they
respond proportionally to the sound pressure, p. Now the power
in a sound wave, all else equal, goes as the square of the pressure. (Similarly,
electrical power in a resistor goes as the square of the voltage.) The log of
x2 is just 2 log x, so this introduces a factor of 2
when we convert pressure ratios to decibels. The difference in sound pressure
level between two sounds with p1 and p2 is therefore:
20 log (p2/p1) dB = 10 log (p22/p12) dB = 10 log (P2/P1) dB (throughout, the log is to base 10). What happens when you halve the sound power? The log of 2 is 0.3010, so the log of 1/2 is -0.3, to a good approximation. So, if you halve the power, you reduce the power and the sound level by 3 dB. Halve it again (down to 1/4 of the original power) and you reduce the level by another 3 dB. If you keep on halving the power, you have these ratios.
What happens if I add two identical sounds? Do I double the intensity (increase of 3 dB)? Or do I double the pressure (increase of 6 dB)? This frequently asked question is a little subtle, so it is discussed here on our FAQ. Sound files to show the size of a decibelWe saw above that halving the power reduces the sound pressure by √2 and the sound level by 3 dB. That is what we have done in the first graphic and sound file below.
Standard reference levels ('absolute' sound level) We said above that the decibel is
a ratio. So, when it is used to give the sound level for a single sound rather
than a ratio, a reference level must be chosen. For sound pressure level, the
reference level (for air) is usually chosen as pref = 20 micropascals (20 μPa),
or 0.02 mPa. This is very low: it is 2 ten billionths of an atmosphere.
Nevertheless, this is about the limit of sensitivity of the human ear, in its
sensitive range of frequency. (Usually this sensitivity is only found in
rather young people or in people who have not been exposed to loud music or
other loud noises. Personal music systems with in-ear speakers
are capable of very high sound levels in the ear, and are believed by some to
be responsible for much of the hearing loss
in young adults in some countries.)
So if you read of a sound pressure level of 86 dB, it means that 20 log (p2/pref) = 86 dB where pref is the sound pressure of the reference level, and p2 that of the sound in question. Divide both sides by 20:log (p2/pref) = 4.3 p2/pref = 104.3 4 is the log of 10 thousand, 0.3 is the log of 2, so this sound has a sound pressure 20 thousand times greater than that of the reference level (p2/pref = 20,000) or an intensity 400 million times the reference intensity. 86 dB is a loud sound but not dangerous—provided that exposure is brief.What does 0 dB mean? This level occurs when the measured intensity is equal to the reference level. i.e., it is the sound level corresponding to 0.02 mPa. In this case we have sound level = 20 log (pmeasured/pref) = 20 log 1 = 0 dB Remember that decibels measure a ratio. 0 dB occurs when you take the log of a ratio of 1 (log 1 = 0). So 0 dB does not mean no sound, it means a sound level where the sound pressure is equal to that of the reference level. This is a small pressure, but not zero. It is also possible to have negative sound levels: - 20 dB would mean a sound with pressure 10 times smaller than the reference pressure, i.e. 2 μPa.Not all sound pressures are equally loud. This is because the human ear does not respond equally to all frequencies: we are much more sensitive to sounds in the frequency range about 1 kHz to 7 kHz (1000 to 7000 vibrations per second) than to very low or high frequency sounds. For this reason, sound meters are usually fitted with a filter whose response to frequency is a bit like that of the human ear. (More about these filters below.) If the "A weighting filter" is used, the sound pressure level is given in units of dB(A) or dBA. Sound pressure level on the dBA scale is easy to measure and is therefore widely used. One reason why it is different from loudness is because the filter does not respond in the same way as the ear. To understand the loudness of a sound, the first thing you need to do consult some curves representing the frequency response of the human ear, given below. (Alternatively, you can measure your own hearing response.) Another reason is that human hearing is not logarithmic. Logarithmic measures
The filters used for dBA and dB(C)
On the music acoustics and speech acoustics sites, we plot the sound spectra in dB. The reason for this common practice is that the range of measured sound pressures is large. dB(G) measurements use a narrow band filter that gives high weighting to frequencies between 1 and 20 Hz, and low weighting to others. It thus gives large values for sounds and infrasounds that cannot readily be heard. ISO 7196:1995 Loudness, phons and sones, hearing response curves
This graph, courtesy of Lindosland, shows the 2003 data from the International Standards Organisation for curves of equal loudness determined experimentally. Plots of equal loudness as a function of frequency are often generically called Fletcher-Munson curves after the original work by Fletcher, H. and Munson, W.A. (1933) J.Acoust.Soc.Am. 6:59. You can make your own curves using our hearing response site. The sone is derived from psychophysical measurements which involved volunteers adjusting sounds until they judge them to be twice as loud. This allows one to relate perceived loudness to phons. One sone is defined to be equal to 40 phons. Experimentally it was found that, above 40 phons, a 10 dB increase in sound level corresponds approximately to a perceived doubling of loudness. So that approximation is used in the definition of the sone: 1 sone = 40 phon, 2 sone = 50 phon, 4 sone = 60 phon, etc.
This relation implies that loudness and intensity are related by a power law: loudness in sones is proportional to (intensity)log 2 = (intensity)0.3. Wouldn't it be great to be able to convert from dB (which can be measured by an instrument) to sones (which approximate loudness as perceived by people)? This is sometimes done using tables that you can find in acoustics handbooks. However, if you don't mind a rather crude approximation, you can say that the A weighting curve approximates the human frequency response at low to moderate sound levels, so dB(A) is very roughly the same as phons, over a limited range of low levels. Then one can use the logarithmic relation between sones and phons described above. Recording level and decibels
absolute voltage level = 20 log (V/Vref) The obvious level to choose is one volt rms, and in this case the level is written as dBV. This is rational, and also convenient with analog-digital cards whose maximum range is often about one volt rms. So one has to remember to the keep the level in negative dBV (less than one volt) to avoid clipping the peaks of the signal, but not too negative (so your signal is still much bigger than the background noise). Sometimes you will see dBm. This used to mean decibels of electrical power, with respect to one milliwatt, and sometimes it still does. However, it's complicated for historical reasons. In the mid twentieth century, many audio lines had a nominal impedance of 600 Ω. If the impedance is purely resisitive, and if you set V2/600 Ω = 1 mW, then you get V = 0.775 volts. So, providing you were using a 600 Ω load, 1 mW of power was 0 dBm, which was 0.775 V, so you calibrated your level meters thus. The problem arose because, once a level meter that measures voltage is calibrated like this, it will read 0 dBm at 0.775 V even if it is not connected to 600 Ω So, perhaps illogically, dBm will sometimes mean dB with respect to 0.775 V. (When I was a boy, calculators were expensive so I used dad's old slide rule, which had the factor 0.775 marked on the cursor window to facilitate such calculations.) How to convert dBV or dBm into dB of sound level? There is no simple way. It depends on how you convert the electrical power into sound power. Even if your electrical signal is connected directly to a loudspeaker, the conversion will depend on the efficiency and impedance of your loudspeaker. And of course there may be a power amplifier, and various acoustic complications between where you measure the dBV on the mixing desk and where your ears are in the sound field. Intensity, radiation and dB
Pressure, intensity and specific impedance
dBi and radiation that varies with direction
So, when you interested in emission in (or reception from) a particular direction, you want the ratio of intensity measured in that direction, at a given distance, to be higher than that measured at the same distance from an isotropic radiator (or received by an isotropic receiver). This ratio is called the gain; express the ratio in dB and you have the gain in dBi for that radiator. This unit is mainly used for antennae, either transmitting and receiving, but it is sometimes used for sound sources and directional microphones. Example problems
Occupational health and safetyDifferent countries and provinces obviously have different laws concerning noise exposure at work, which are enforced with differing enthusiasm. Many such regulations have a limit for exposure to continuous noise of 85 dB(A), for an 8 hour shift. For each 3 dB increase, the allowed exposure is halved. So, if you work in a nightclub where amplified music produces 100 dB(A) near your ears, the allowed exposure is 15 minutes. There is a limit for impulse noise like firearms or tools that use explosive shots. (e.g. 140 dB peak should not be exceeded at any time during the day.) There are many documents providing advice on how to reduce noise exposure at the source (ie turn the music level down), between the source and the ear (ie move away from the loudspeakers at a concert) and at the ear (ie wear ear plugs or industrial hearing protectors). Noise management and protection of hearing at work is the code of practice in the state of New South Wales, Australia (the author's address). Some FAQs
Related pages
|
|
||||||||